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Abstract—Computing the steady-state response of large non-
linear circuits is becoming a key simulation requirement due to the
rapid market growth of RF silicon integrated circuits. In this paper,
we describe a nonlinear circuit reduction algorithm for finding the
steady-state response. The proposed algorithm uses a congruent
transformation-based technique to reduce the harmonic-balance
equations into a much smaller set of equations. The main feature
of the reduced circuit is that it shares with the original one a cer-
tain number of the derivatives with respect to the RF input power.
Steady-state analysis is then done on the reduced circuit instead of
the original circuit.

Index Terms—Circuit reduction, harmonic balance, Krylov pro-
jection, nonlinear circuits, steady-state response.

I. INTRODUCTION

T HE rapid growth in RF silicon integrated circuits (ICs)
for mobile communication systems has placed new de-

mands on the simulation tools. Quantities such as intermodu-
lation and harmonic distortion are typically of interest to cir-
cuit designers. However, finding the steady-state response for
large analog and microwave nonlinear circuits represents an in-
creasing challenge. The reason for this is that these circuits usu-
ally exhibit characteristics that make most traditional transient-
based time-domain approaches perform poorly. For instance, if
there are widely separated time constants in the circuit, then the
usual transient analysis can take many clock cycles before the
steady-state solution is reached.

The harmonic-balance (HB) technique [1], [2] has been
introduced to address the above difficulties. The main philos-
ophy behind HB by is that waveforms in a periodically excited
nonlinear circuit are periodic and, thus, can be represented
in the frequency domain as a finite Fourier series. In effect,
this transforms the differential equations describing the circuit
into a set of nonlinear algebraic equations that can be solved
directly using iterative techniques such as the Newton–Raphson
(NR) method. However, the main bottleneck that comes with
solving this set of nonlinear equations is the prohibitive CPU
cost that is required to store and factorize the Jacobian matrix
of the nonlinear equations. Unfortunately, for large RF ICs
with strong nonlinearities, this Jacobian matrix becomes
large and dense [3] and its factorization can be expensive
even for medium-sized circuits [5]. In addition, like all other
locally convergent methods, NR has convergence problems.
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Convergence can be achieved only by finding sufficiently close
initial values to the solution, which is difficult, particularly for
the cases of high excitation levels. Continuation methods, on
the other hand, have been proposed to avoid the convergence
problems associated with the direct NR method. In the contin-
uation methods scheme, the original set of nonlinear equations
is replaced with an auxiliary system of the same size whose
solution is trivial, and then use some sweeping parameter
to trace the solution trajectory back to the original system.
However, these methods are computationally expensive as
they require the factorization of the Jacobian matrix at many
values of the sweeping parameter. In addition, matrix-implicit
linear solvers have been introduced to reduce the high cost of
factorizing and storing the Jacobian matrix. In this scheme,
only the components of the Jacobian matrix need to be stored
and Krylov-subspace iterative solvers are used [4]. However,
these methods require the use of preconditioners to improve
their convergence. In addition, they still need to operate on the
full size of the Jacobian matrix.

In this paper, we describe a new algorithm that poses the
problem from a different perspective. The crux of the proposed
algorithm is to reduce the size of the Jacobian matrix needed
for the HB solution quite drastically, through the introduction
of the new concept of nonlinear circuit reduction. This enables
the original large set of nonlinear equations representing the HB
equations to be replaced with a much smaller set of nonlinear
equations. The main feature of the reduced set is that it shares
with the original one the first few derivatives with respect to
the RF excitation level at the dc operating point. A continuation
scheme is then used to trace the solution of the reduced equa-
tions and map it back to the space of the original circuit equa-
tions. This introduces a significant computational advantage, as
the size of the Jacobian matrix that needs to be factorized is typ-
ically much smaller than the size of the original Jacobian.

The organization of this paper is as follows. Section II pro-
vides a brief description of the HB approach. Sections III and IV
describe the proposed algorithm and computation of the deriva-
tives, respectively. Section V gives a proof for the equivalence
of the derivatives between the reduced and original systems. Nu-
merical examples and conclusion are described in Sections VI
and VII, respectively.

II. HB A PPROACH

Consider a circuit consisting of nonlinear and linear compo-
nents. Using a nodal approach, Kirchoff’s current laws can be
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used to describe the circuit as [2]

(1)

where
impulse response matrix of the linear com-
ponents;
vector containing the nodes voltage wave-
forms;
vector containing the Norton equivalents
of the source voltage waveforms [7];

and functions describing the nonlinear con-
ductances and capacitances in the circuit,
respectively;
total number of nodes in the circuit.

The HB approach assumes that , , , and
can be written as a finite Fourier series, i.e.,

(2)

(3)

(4)

(5)

where , , , and represent the harmonics for the
nodes voltages, currents of the nonlinear conductances, charge
of the nonlinear capacitances and sources currents, respectively,
and is the fundamental frequency. Thus, (1) can be rewritten
in the frequency domain as the following set of nonlinear equa-
tions:

(6)

where is an complex block matrix,
i.e., , whose block matrices are given by

(7)

where is the -parameters matrix of the linear compo-
nents. In (6) is a diagonal matrix such that it has cycles
of along its main diagonal and
is vector that contains the harmonics for the
voltage waveforms at the nodes. Solving the system of non-
linear equations (6) will be explored in Sections II-A and II-B.

A. Newton–Raphson Method

In the Newton–Raphson (NR) method, the harmonics solu-
tion vector is updated iteratively in the following way:

(8)

where is the Jacobian matrix of with respect to

(9)

Here, the matrix can be represented in the block form

(10)

where the entry in the blocks is given by

(11)

where is the fundamental period, i.e., . The
entries for the matrix are similar to those of
in (11).

As can be seen here, the major time-consuming part is spent
in factorizing the Jacobian matrix due to its large size and dense
structure.

In addition, it is widely known that the NR method is lo-
cally convergent. Thus, convergence can be very fast only if the
starting point is sufficiently close to the solution. Otherwise the
method diverges.

B. Continuation Methods

Continuation methods are usually used to overcome the con-
vergence problems associated with the iterative techniques such
as the NR method described above. The basic idea of the contin-
uation methods is to augment the system in (6) with some
parameter, say,, to obtain another auxiliary system .
Here, is chosen such that the system given by has a
trivial solution in and the system given at
identically in . For our case, the augmented system can be for-
mulated by splitting the source vector into two vectors and
writing down the new system as

(12)

Here, is a vector that represents the harmonics due to the
RF sources in the circuit, while represents the biasing dc
sources. At , the solution of (12) is simply the solution
obtained from the usual dc analysis, while at , the system

has the same solution as (6). Thus, a typical contin-
uation method proceeds by taking small increments inand
solving the system , until .

Although the continuation methods have provided a major
advantage in being able to avoid the convergence problems, they
are computationally expensive because they require the solution
of many auxiliary systems of equations corresponding to various
values of . In addition, the major time consuming part spent
in factorizing the large and dense Jacobian still dominates the
computation.

III. PROPOSEDALGORITHM

The main objective of the proposed algorithm is to signif-
icantly reduce the size of the original circuit described in (1)
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and, consequently, the size of the Jacobian matrix. This is done
by replacing the original large set of equations in (12) by a much
smaller one. The reduced set of equations is obtained by ef-
fecting the following change of variables:

(13)

in (12), and then premultiplying by to obtain the new set of
equations given by

(14)
where

(15)

In the above equation, is an orthonormal
basis for the subspace spanned by the firstTaylor’s series co-
efficients (or the scaled derivatives) ofwith respect to with

. In other words, if the Taylor series expansion
of with respect to is given as

(16)

then

(17)

The basic concept behind this change of variables is that the
reduced system obtained by this transformation preserves the
first Taylor’s series coefficients of the original system under
the mapping [8]. More precisely, if is expanded as the
Taylors’ series

(18)

then

(19)

In this case, applying the continuation method to the system in
(14) to track the solution trajectory requires the factorization of
the Jacobian matrix

(20)

This provides a significant computational advantage since the
size of the Jacobian in (20) is typically much smaller than the
one in (9). Solutions in the space of the original circuit HB equa-
tions are thus obtained using the mapping in (13).

Another computational advantage offered by (20) is that com-
puting the reduced Jacobian does not require the original one to
be constructed explicitly. To explain this fact, we use a permu-
tation operator to rewrite (23) in the form [5]

(21)

where is the discrete Fourier transform (DFT) oper-
ator and the matrices and are block diagonals with blocks
representing the linearization of the circuit at the sampling time

points , with . Thus, by exploiting
the structure shown in (21), the reduced Jacobian in (20) can
be constructed efficiently by a series of matrix vector products
using the fast Fourier transform (FFT) [10]. Another advantage
that can be seen from (20) is that the construction of the reduced
Jacobian lends itself quite easily to parallel processing.

IV. COMPUTATION OF THEDERIVATIVES

To compute the derivatives, we proceed by writing (12) in the
form

(22)

where and then expanding both
and as a Taylor series in

(23)

Clearly, at , we have . Substi-
tuting from (23) into (22) and setting results in

(24)

Note that in (24) is simply the dc solution. Also equating the
first power of yields

(25)

Now define to be

(26)

Since , then substituting
in (25) gives the following relation for :

(27)

In order to compute , we expand as a Taylor’s
series in

(28)

and then use this expansion to write in the following
form:

(29)

Taking the th derivative in (29) with respect to and putting
, we get the following recursive relationship:

(30)

Thus, taking the th derivative with respect to in (29) and
substituting results in

(31)
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It is clear from (27) and (31) that computing
requires only one LU decomposition of the Jacobian matrix
and each derivative can be obtained by one forward/backward
substitution. Next, we proceed to show how to compute the
right-hand side in (31). The term represents the deriva-
tives with respect to with and evaluated using (24) and
(27), and the higher order th derivative evaluated recur-
sively using (31). The other term required in (31) is. For sim-
plicity of presentation, we address only one of the nodes with
nonlinear elements, but the method is general for any number of
nonlinear elements in the network. Consider a nonlinear resis-
tive element governed by the relation . In this case

(32)

with

(33)

(34)

where are time points over the fundamental period.
Noting the Taylor expansions

(35)

we can write the expression for as

(36)

where is a diagonal matrix whose elements are the time sam-
ples of . As an example of computing , consider the case
where

(37)

then it can be shown that

(38)

Similar expansions can be found for other functions as shown
in Table I [11].

V. PROOF OFDERIVATIVES PRESERVATION

In this section, we prove that the reduced system in (14)
shares with the original set of equations in (12) the first
derivatives with respect to . The proof will be given by
mathematical induction. First, it shall be proven that the first
derivative of with respect to as obtained from the reduced
equations in (14) is equivalent to the one obtained from the
original HB equations in (12) through mapping by. Next, we
proceed by showing that the same relation applies to theth

TABLE I
SOME FORMULAS FOR THEDERIVATIVES OF SIMPLE FUNCTIONS

derivative of provided that the previous derivatives
are preserved under using the mapping.

First, , , and in (14) are expanded in
Taylor series form

(39)

Substituting from (39) into (14) and equating similar powers of
results in the following:

(40)

(41)

Using the chain rule in differentiation, in (40) can be
written as

(42)

Using the Taylor’s expansion of in (39), (42) takes the
form

(43)

A similar expression for can also be obtained, where

(44)

Using (26), (43), and (44), and substituting with , (40)
becomes

(45)
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Since is an orthonormal basis for the subspace spanned by the
columns of the matrix , it can then be represented in
the form [9]

(46)

where is an upper triangular matrix. Substituting from (46)
into (45) results in

(47)
where . Substituting , where
is the th column of the identity matrix, in (47) and simplifying
yields

(48)

Hence, using (27), it can be seen that is the solu-
tion for (47). Therefore, the mapping of through produces

(49)

Thus, it is clear from (49) that the first Taylor’s series coefficient
is preserved under a mapping by.

To proceed with higher derivatives, we write in
the form

(50)

Substituting in the above equation and simplifying gives

(51)

Now substitute from (51) into (41) to obtain

(52)

Now assume that for and use (46) in
(52), we obtain

(53)

Substituting in the above equation yields

(54)

Fig. 1. Solution of the fundamental harmonic.

Fig. 2. Solution of the third harmonic.

Thus, comparing with (31) shows that is the
solution for (53). Therefore, the mapping ofthrough pro-
duces

(55)

Thus, it is clear from (55) that theth Taylor’s series coefficient
is preserved under a mapping by. This completes the proof.

VI. SUMMARY OF THE ALGORITHM

The main steps of the proposed algorithm are summarized as
follows.

1) Starting from the dc operating point, the derivatives of the
harmonics with respect to toare computed as explained
in Section IV

2) An orthonormal basis for the column
span of the derivatives matrix in (17) is constructed using

factorization [12].
3) Using this orthonormal basis, a reduced system of non-

linear equations is formulated as in (14) and (15).
4) Equations (14) and (15) are solved forby incrementally

increasing the value of



2394 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 12, DECEMBER 2000

Fig. 3. Solution of the fifth harmonic.

Fig. 4. Periodic time-domain response of the bipolar circuit (Example 1).

5) The solution of the original system is obtained in terms
of using (13) and the residual error is calculated. The
order of reduction is increased if this residual error is
greater than a prespecified tolerance.

VII. N UMERICAL EXAMPLES

Example 1: The proposed circuit reduction technique was
applied to a bipolar transistor amplifier circuit. The congruent
transformation matrix was obtained from the derivatives at the
dc solution, requiring only one LU factorization of the Jacobian
matrix. The HB algorithm was then applied to the reduced cir-
cuit and the solution was compared with that of the original cir-
cuit. The output response as a function of the amplitude of the
input waveform is shown in Figs. 1–3. As can be seen from the
plots, a congruent transformation of order 16 is enough to match
the response of the original circuit up to high distortion levels.
The size of the Jacobian of the reduced circuit was only 16
16 compared with that of the original circuit Jacobian of 429
429. The proposed algorithm required onlyone solutionof the

Fig. 5. Op–amp circuit of Example 2.

Fig. 6. Comparing the second harmonic behavior versus the continuation
parameter� in the original and reduced circuit.

large Jacobian equations. Conventional analysis, however, re-
quired this solution63 times (one for each Newton iteration at
each step of the continuation method). Fig. 4 shows a compar-
ison for the time-domain response as obtained through solution
of the original circuit using classical HB and the solution ob-
tained through three different reduced circuits.

Example 2: An op–amp circuit consisting of five transistors
is considered for this example (Fig. 5). Conventional HB anal-
ysis required 24 harmonics to approximate the steady-state re-
sponse for this circuit. Performing the HB analysis needed 67
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Fig. 7. Comparing the fifth harmonic behavior versus the continuation
parameter� in the original and reduced circuit.

Fig. 8. Comparing the ninth harmonic behavior versus the continuation
parameter� in the original and reduced circuit.

NR iterations with 67 LU decompositions of a Jacobian matrix
of size 2400 2400.

Using the proposed algorithm, a reduced set of nonlinear
equations of order 35 has been constructed using the deriva-
tives at the dc operating point. Solution of the reduced set of
nonlinear equations was then tracked versus the full swing of
the input power. Figs. 6–8 depict the behavior of the second,
fifth, and ninth harmonics of the output node voltage in both the
original and reduced circuits versus the continuation parameter

. As can be seen, the behavior of the harmonics in the reduced
system is indistinguishable from that of the original system.
Fig. 9 shows a comparison for the magnitudes of the harmonics
(in decibels per volt) at the output node as computed from the
original and reduced circuits at the terminus of the continuation
sweep . A CPU comparison between the proposed
algorithm and conventional HB is shown in Table II. As can
be seen, a speedup factor of 12.3 was achieved without loss of
accuracy.

Fig. 9. Accuracy comparison.

TABLE II
CPU COMPARISON OF THEPROPOSEDALGORITHM VERSUS

CONVENTIONAL HB

VIII. C ONCLUSION

In this paper, a new algorithm for finding the steady-state so-
lution has been proposed. The algorithm is based on the idea of
nonlinear circuit reduction, where it uses a Krylov-based projec-
tion technique to construct a reduced set of nonlinear equations.
The main feature of the reduced set of nonlinear equations is that
it shares with the original HB equations the first derivatives with
respect to the ac power of the input sources in the circuit at the
dc operating point. Solution of the reduced set is then tracked
through sweeping the power level of the input signal. The main
advantage of the new algorithm is that reduces the size of the
Jacobian matrix significantly, while preserving the accuracy of
the solution. This results in a significant CPU cost savings.

Although most of the study here concentrated on a single-tone
excitation circuits, the proposed algorithm can be applied in
multitone situations as well. The advantage in this case will be
even more conspicuous since the problem size becomes much
bigger due to the increase number of spectral lines.
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