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Numerical calculations are easily accomplished with a

computer.
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Reciprocal and Nonreciprocal Modes of

Propagation in Ferrite Stripline

and Microstrip Devices

MARION E. HINES, FELLOW, IEEE

Abstract—An approximate analysis is presented together with a

physicaf description of the modes of propagation in stripline and

microstrip devices of significant width, using ferrite slabs as dielectric

material, magnetized perpendicular to the ground plane. The dom-

inant mode resembles TEM propagation, except that there is a

strong transverse field displacement, causing wave energy to be

concentrated along one edge of the line. Nonreciprocal behavior is

obtainable by asymmetrically loading the edges. Approximate

analytical techniques are given for isolators and phase shifters, with

examples of numerical computations and experimental results.

I. INTRODUCTION

sOM E of the modes of propagation in strip-line and

microstrip transmission lines using ferrite slabs as

dielectric material are described. A new form of

isolator and a new nonreciprocal phase shifter are also

described which utilize these transmission media. ln all

cases magnetization is perpendicular to the ground

plane. Approximate analytic treatments are presented,

based upon solutions of Maxwell’s equations in alterna-

tive geometrical models, intuitively deduced to be

qualitatively equivalent. Exact treatments of the

boundary problems appear to be intractable.
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These new devices have several desirable properties

and are adaptable for use in microwave integrated cir-

cuitry. Use of the isolator in a distributed negative-

resistance diode amplifier has already been described

[I]. Because of certain unique properties of the trans-

mission modes, still other applications may be found in

the future. The work reported here was undertaken to

provide quantitative approximations for the propaga-

tion constants and the field configurations of the various

modes and to provide a design theory for practical non-

reciprocal devices in these configurations.

Figs. 1 and 2 illustrate these configurations. It is

assumed that the center (or upper) conductor is sub-
stantially wide compared with the thickness of the

ferrite, with most of the RF energy in the rectangular

zone I between the conductors. The ,fringing-field zones

II and III at the edges are treated as special boundaries

which modify the propagation characteristics.
TM modes are normally impossible between parallel

plates when the spacing is less than one half-wavelength

and are not, therefore, included in this analysis. In

zone I simple TE modes are assumed, with field com-

ponents E., Hz, and Hu. E. is assumed to be invariant

with z. Only the ordinary macroscopic waves are con-

sidered at frequencies well removed from the resonance

frequency yHJ. Some of the most interesting cases are
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Fig. 1. Microstrip line showing RF fields of dominant
mode. Dc magnetization is in z direction.

computed for the condition of a highly magnetized

(commonly, but not necessarily, saturated) material

with a low internal field Hi, often assumed to be zero.

Figs. 1 and 2 show sketches of the RF fields ~ and ~

for the dominant mode of propagation. It is seen that

there is a strong variation of field quantities transverse

to the direction of propagation. The RF energy tends

to be concentrated at one side in lines of significant

width. This “field displacement” effect is reversed for

the two opposite directions of wave propagation. It will

also be reversed by reversing the direction of the mag-

netization. This effect is used to provide the non-

reciprocal behavior of the new isolator and phase shifter

devices which are described.

II. BASIC EQUATIONS

The analytical approach is to divide the device into

three longitudinal zones as shown in Figs. 1 and 2.

Zone I is the central region between the upper (or

central) conductor and the ground plane (or planes),
which we analyze in rectangular coordinates. Zones II

and I I 1 are fringing-field zones which may contain other

intentional perturbations. These edge zones form the

boundaries for zone 1. General solutions to Maxwell’s

equations are written for zone 1, and the propagation
constants are determined by matching the boundary

admittances of zones II and 111 at x = O and at x = a.

Various approximations for the edge admittances are

used in specific cases in following sections.

Assuming only the field quantities E., l%, and H*, TE

solutions for Maxwell’s equations can be found in vari-

ous standard texts [2], [3]. Treatment of zone I is
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Fig. 2. Cross section of stripline showing
RF fields of dominant mode.

identical for the two geometries. In the stripline case,

time-phase is reversed in the upper half and all field

quantities are as mirror images in the two halves. In

these equations, M KS formulations are used with

IJO=47r X10-7 H/m and CO= l/Mrx IO-9 F/m. The
quantities q, w, and ~ are dimensionless relative quanti-

ties relating to the ferrite material. Using ~ and B as

arbitrary constants, T. and Tu as propagation constants,

and ejut understood, the field equations are written

directly:

( )}+ B –jyz – g YV e+’”’ e-’@ (2)
I-J

‘B(;~x-’7ff)(’+’’xe-’vwo‘3)
The propagation constants are related by the equation

7X2 + ‘YY2 + @21JO~OMeq~f = 0. (4)

In the preceding, I.Land K are the diagonal and off-

diagonal coefficients of the permeability tensor for

magnetization in the z direction. For complete deriva-

tions the reader should consult the texts referenced. For

the lossless case, assumed here, these are approximated:

(5)

@@m
K=

~“2 — ~2
(6)

The equivalent permeability p.. is given by
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Also, UOis the gyromagnetic resonance frequency pro-

portional to the internal magnetic field Hi and un is a

magnetization frequency related to the induced mag-

netization of the ferrite,

@o=—— yHi (8)

~m=— yM. (9)

(If Hi is in oersteds and 4TM is in gauss, then T/2rz2.8

MHz/Oe.)

In the general field equations (l)–(3) YZ and ~. may

be real, complex, or imaginary. For lossiess propagation

in the +y direction, Yu is positive imaginary, but, y~

may be either purely real or purely imaginary, depend-

ing upon the boundary conditions and the mode in-

volved. In the isolator solutions given later, both T,

and yv are complex, where

1 I 1. FIRST APPROXIMATION: NEGLECT OF

FRINGING FIELDS

For thin ferrite slabs with a significant width of con-

ductor, only a small fraction of the RF energy will be

involved in the fringing fields. Particularly in the strip-

Iine case with mirror symmetry about the central plane,

there can be but little current in the center conductor

directed transversely at the edge. This implies the

boundary condition H.= O at x = O and at x = a. (ln

the microstrip case, this is less accurate, but is believed

to be qualitatively meaningful in many cases. In

Section V we present a better estimate for the boundary

cases. ) The boundary condition Hu = O at x = O and

x = a is equivalent to a hypothetical magnetic wall at

the planes x = O and x = a.

Case 1: Very Wide or Semi- In.nite Line

Here, solutions exist for a unidirectional wave con-

fined to a single edge. For assumed Iossless propagation

with finite energy, we take

B=O

,8Z=o

au = O. (12)

The field equations can be simplified as follows:

which can be directly solved through the use of (4) to

give
——

D. = %“woeoefP (17)

(18)

This is the edge-guided mode. ‘–-

The field patterns are similar to those of Figs. 1 and

2, assuming that the width a becomes very large and

that the fields decay exponentially to negligible values

at large x . Note that Figs. 1 and 2 show ~ lines, rather

than ~. In Maxwell’s equations, div ~ = O, and here,

div ~#0. The ~ lines are purely transverse and simply

fade away with increasing x. H.= O everywhere and this

is a TEM mode in this approximation, but note that

B. # O because of the tensor relationship.

A characteristic impedance can be determined in

three different formulations. For the wave impedance,

E,

-d

MOM
ohms per square.

Hz= ~
(19)

An alternative form relates the impedance to the power

and the total y-directed current,

P co/.tohK
zol=~=— ohms.

?J 2
(20)

In terms of the voltage at the edge (V= Ah), the

impedance is

V2

Zov = ~ = 2coyohK ohms, ‘ (21)

In (20) and (21), the equations apply for a single

side, as in Fig. 1. For the double-sided case (Fig. 2),

these values should be divided by two.

A particularly interesting special case is that where

the material is magnetized with a weak internal field, no

greater than necessary for saturation. Assuming H,= O,

the results are

WJ=o (22)

~=1 (23)

‘~=#z{a$-;’}e-”’xe-’&”’14)
Zov =2wmpoh. (27)

Under these conditions and assumptions, this mode

{ 1
of propagation is predicted to be free of dispersion over

HZ = —A— _ !! ~J + & e–@xe-J%.. (15) all frequencies, to have a constant characteristic im-
@~OIJeQ l-l pedance, and to have a constant transverse decay rate

For the boundary condition Hu = O at x = O, we write, am in the x direction. In practical cases, however, ferrite

from (14), materials exhibit high losses at low internal fields at

frequencies substantially lower than co~. The effects of
K

a2— —/3g=Q (16) fringing fields, neglected here, are more significant at

R high frequencies. For frequencies below w~, this appears
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to be the only mode possible, but above u~, other modes

of propagation can exist in the ferrite zone if the line is

sufficiently wide. For these reasons, there are finite limits

to the frequency band for utilization of this mode in

practical devices.

Case 2: Finite-Width Lossless Lines

In the general case, each mode must include the two

solutions with two arbitrary constants. A number of

TE modes are possible in lines of sufficient width. We

may distinguish these by an order n, where n is the

number of E-field nulls found within zone I. The

dominant mode, for which n = O, is the most important.

In this approximation, which neglects fringing fields,

x variations are exponential in the zero mode. In the

higher order modes, sinusoidal x variations occur.

For the zero or dominant mode, the equations of case

1 apply. As H.= O everywhere, we need only consider

the finite range of x from zero to a. The characteristic

impedance, for a single ferrite slab, is given by

/2wpOK
ZIJI = —— .

2 tanh (aZa/2)
(28)

ZOV is an ambiguous concept in this geometry, but the

other equations of Case 1 apply directly.

This approximate analysis which neglects fringing

fields, indicates that the dominant mode is TEM in

character with only E. and Hz field components. Equa-

tion (25) indicates that it will propagate in frequency

ranges where plane waves are cut off because pe~ is

negative. However, cut-off phenomena occur for

frequencies near resonance coo, where p is negative. In

cases where the ferrite is magnetized with a low internal

field Hi, propagation will be possible over very wide

bands, although high losses are normally found at low

frequencies, substantially below w~, Figs. 1 and 2 show

the field configurations for this mode. The effect of the

ferrite is to force the energy toward one side of the line.

To the extent that fringing fields can be neglected, the

degree of asymmetry is independent of frequency if the

internal dc field is weak (H;~O).

For the higher order modes, ~. is imaginary and it is

appropriate to use equations in which the x variations

are sinusoidal. Equations (l)–(3) can be rewritten

accordingly. Using new arbitrary constants C and D,

the equations are

Hu=~
“(

@z(C’ sin (/?ZZ) – D cos (,f?zx))
WPOPeq

)–6U g (C cos (Az) + D sin (@z&)) e–~~” (30)
P

lK
Hz=—————

(
— Q(-–C sin (Box) + D cos (&*))

W 01.% P

)+ ,LL(C cos (Dzx) + D sin (@.x)) e–~~””. (31)

r NU1 L ZONE

/

Fig. 3. E, field configuration in first higher orcler mode. Hv nulls
are found at edges; fields have sinusoidal variations with x.

Again, the boundary conditions are H.= O at x = O

and x = a. Using (30) we obtain

Solution of these equations requires that

(36)

The radicals must be internally positive in these solu-

tions. For each such higher order wave of order n, a cut-

off frequency may be determined by setting the radical

equal to zero.

Fig. 3 shows a sketch of the fields for the first-order

wave of this type. There is a single E-field null in the

central region. Hu nulls occur at the edges. The pattern

is asymmetrical with the null displaced from the axis.

This class of mode cannot propagate for frequencies and

magnetization conditions such that p.~ <0, even for very

lines. In such cases, only the dominant or edge-guided

mode can propagate.

lV. EDGE LOADING IN NONRECIPROCAL DEVICES:

BASIC PRINCIPLES -4ND EQuA7rIoIw

In lines of finite width, analyzed in Case 2, propaga-

tion occurs in both + y directions with equal phase
velocities and 10SS. However, the field patterns are

laterally reversed, as mirror images, for the two direc-
tions of propagation. Similarly, the patterns may be

reversed by reversing the sense of the magnetization.

In the dominant mode, the energy will shift from one
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TABLE I For the boundary at x = O, the following matching

PARAMETERS USED IN ISOLATOR COMPUTATION OF FIG. 4 equation is obtained:

47rM= 1760 G
ef=16

Hi=O (ox=O) “z(’-%)-:’~(l+: )=%”eq(l+:) ’41)
w~/2w =4.928

~=1
a=O.5 cm

~q = 1 – (cOm/c0)2
K ‘6k/W

& = 150 ohms/square

side to the other with a field reversal or wave direction

reversal.

To obtain nonreciprocal behavior, the structure may

be perturbed in an asymmetrical way. With resistive

loading on one side only, high transmission loss will

occur for the propagation direction for which the energy

is concentrated on the Iossy side, and lower loss for the

oppositely directed wave where the energy is on the

opposite side. This device is a new form of field-dis-

placement isolator.

Nonreciprocal phase shift can be obtained by asym-

metrical reactive loading of the opposite sides of the

line, for example, by adding high-dielectric-constant

material at one edge and using a low-dielectric-constant

material at the other edge. When the energy is concen-

trated on the high-dielectric side, the wave will be

slowed, giving greater phase shift; for the reverse wave,

the energy will be greater at the low-dielectric side,

giving reduced phase shift. By reversal of the magnetic

field, the phase of transmission for a unidirectional wave

will be equivalent y changed.

Mode analysis, including edge-loading effects, can be

accomplished using ‘(l)–(9). At the two edge boundaries

of zone 1 it is necessary to match the lateral wave

admittance of the ferrite to that of the loaded edge. This

is defined as the quotient HV/E.. For zone I this is the

ratio of (2) to (1) at * = O and x = a, which are matched

to the wave admittances at the edges of zone II and

II 1, respectively.

An accurate analysis must include the admittances of

the fringing fields of the stripline or microstrip as well

as that of any applied conductance or susceptance. In

Section V first-order approximations are presented for

the fringing-field admittances in the stripline or micro-
strip case. For the general equations hereafter it is

assumed that zone I I presents an unspecified edge ad-

mittance YM in (ohms/square)–l. Similarly for zone I I I,

we have Ys.. These admittances may be complex or

imaginary and may be functions of the propagation

constant -fV as well as of frequency.

To simplify the equations and their solution, the

following normalizing substitutions are used:

@d = @tipO~O~/ (37)

P. = ?’u/~d (39)
——

GO = dWf/ALO. (40)

For the boundary at x = a,

( : ‘)-:p~(’+:e2’dpza)
jpz 1 — — ~2@dPxa

( )+: ~eq 1 + ; /#dP.@ = O. (42)

From (4) the normalized dispersion equation is

Pz = 4–PU2 – i% (43)

which may be substituted into (41) and (42). This

reduces the problem to two equations, with two un-

knowns PU and B/A. If either Y2, or Y3Z is resistive, or

if losses in the ferrite are to be included, solution of these

equations is tedious.

Case 3: Field-Displacement Isolator

A numerical solution has been carried out for a resis-

tive wall case in which fringing fields were again ne-

glected. At one wall, x = O, a resistive film is assumed to

be shunting the line edge to the ground plane in the y–z

plane. Thus it is assumed that

Y2Z = l/R~ (44)

Y3Z = o (45)

where R. is the resistance in ohms per square. The

assumed parameters, neglecting ferrite losses, are given

in Table I.

A digital computer was programmed in the following

manner. A trial solution was chosen for pV. This was

substituted in (43), giving a value for ~=. Both were

substituted into (41), which was then solved for B/A.

These values were then substituted into (42), the left-

hand side being treated as a function F(@V). A search

routine was used which repetitively chose new values

for p, such as to reduce F(pY) to zero. The program al-

lowed complex values of fi., Pz, B/A, etc.

As expected, multiple solutions were found for both

directions of propagation. These correspond to the

various modes of propagation described under Case 2.

If the initial choice for PV was in the approximate

vicinity of one of the solutions, the search routine

quickly and automatically converged to the proper

value. If the initial value was poorly chosen, the final

value found by the machine was not always that for

the mode desired at that point of the study. Solutions

for the zero- and first-order modes in both directions

were obtained in the frequency range of 3–15 GHz.

The computed attenuations for these modes are plotted

in Fig. 4.

The curves show a high ratio of forward-to-reverse

transmission for the frequency range 3–10 GHz. Above

10 GHz we see that the first-order mode in reverse has
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Fig. 4. Computations for stripline field-displacement isolator, giv-
ing loss in dB/cm for parameters of Table I. Fringing fields were
neglected and a resistive film is assumed to be shunted between
center conductor and ground planeson one side of zone 1.

ceramic. This includes vertical outer boundaries which

are magnetic walls for which Hu/Eg must be zero. To

include the effects of the fringing fields of the real model,

zones I I and I I I are widened by an amount which is

estimated will include the excess capacitance and re-

duction of inductance associated with the fringing fields.

Rectangular coordinates are used, and zones 11 and III

are terminated at a magnetic wall. A nonmagnetic

stripline of width ~’ between magnetic walls will have

a characteristic impedance

Examination of published data [4] on the impedance of

striplines indicates that this formula will be approx-

imately correct for a stripline of width W if W’ is

increased over the real width W by the spacing 0.894h,

that is, if W’= W+ O.894h. For this reason we presume

that zone 11 in Fig. 5 should have a width b’~b+O.447h

and zone III should have a width c’zO.447h.

We wish to determine the edge admittances of zones

II and III, to be matched to the edge admittance on

either side of zone I. The field equations for these zones

can be directly written, using any standard text on elec-

tromagnetic theory. For zone 11, in air, we have slow-

wave solutions, with hyperbolic functions for x varia-

tions. Here taking x = O at the magnetic wall,

Do’ = co2/J”q (46)

I I I I

“MAGNETIC WALL “MAGNETIC WALL”
‘z= AcOsh(”+’% -l)’-’””

(47)

HY=O HY=O

\

DIELECTRIC

Fig. 5.- Phase-shifter configuration and its
approximate equwalent in analyzable form.

a rapidly decreasing attenuation, which can

degrade the isolation in a practical device.

Case 4: Nonreciprocal Phase-Shifter Analysis

seriously

One form of phase shifter can be constructed as illus-

trated in Fig. 5. This is a stripline version, but micro-

strip models are also possible. Here a relatively wide

stripline is used, but three separate dielectric media are

involved. The central zone is filled with ferrite, the left

side of the conductor is terminated in a low-dielectric-

constant region (such as air) and the right side in a

high-dielectric-constant ceramic (such as Rutile).
The analysis should include some estimate of the

effects of the fringing fields, as these are quite significant

here. The approach is to modify the model into an

analyzable geometry which is intuitively deduced to be

approximately equivalent. The model chosen is illus-

trated in Fig. 5(b). Here a simple rectangular region is

is divided into three zones, one air, one ferrite, and one

“sinh(’4F+””‘“)

..—

‘tanh(@ob’v”z-1, “’)
For zone II 1, where the dielectric constant is e, 62> q,

the phase velocity will be faster than the velocity of

light in that material. We require fast-wave solutions

with sinusoidal x variations. Again, if x = O at the mag-

netic wall,

(50)

(51)
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Fig. 6. Computations of normalized propagation constant for a
nonreciprocal phase shifter of type shown in Fig. 5, using param-
eters of Table II.

TABLE II

ASSUMED PARAMETERS FOR PHASE-SHIFTER COMPUTATIONS OF FIG. 6

&IW= ~ 690 G
Hi= O (co#O)

a= O.75 cm
ej=ls
ft=l
q =45
b’ =0.25 cm
c’ =0.1 cm

“tan(”’’’d=a“3)
In the preceding, equations for the edge admittances

have been given without regard to proper orientation

with respect to the coordinates for our model of Fig. 5.

Lookin,g outward from zone 1, the edge admittance of

the air-filled zone will be inductive, and that of the

dielectric-filled zone will be capacitive if the width c’ is

narrow.

Equations (41) and (42) are used to find the propaga-

tion constants TV and y., using (49) and (53) for the

edge admittances Yzz and Ysz. Using the same computer

program as under Case 3, plots were obtained of the

normalized propagation constant ju for assumed lossless

conditions, with the parameters given in Table 11.

Plots of the normalized propagation constant Pu are

given in Fig. 6. Here values are shown for the dominant

mode and the first-order mode over the frequency range

1–10 GHz. The two values given are for the two direc-

tions of propagation assuming a constant magnetiza-

tion, or alternately, are for the same wave direction,
assuming that the magnetization has been reversed.

V. FRINGING-FIELD APPROXIMATIONS

A. Stri@ne Geometry

This section applies to devices as shown in Fig. 2,

where the magnetized ferrite substrates are wide com-

pared with the center conductor. The RF magnetic

“ET’cw~’
J z

Y
DIELECTRIC
C=6’

k x
0

LFERRITE
L DIELECTRIC

E=Ef

Fig. 7. Alternative geometry for analysis of stripline,
including fringing-field correction.

(a)

‘~,’

(b)

Fig. 8. Geometrical transformation for approximate analysis of
microstrip fringing fields. Cylindrical coordinates outside are
bridged onto rectangular coordinates for ferrite zone. (a) Edge of
microstrip. (b) Approximate equivalent.

fields curve around the edges and form closed loops,

However, these fields, in the dominant mode, are

stronger at one side than the other. Where the H fields

are vertical (in the z direction), parallel to the RF mag-

netization, the ferrite may be assumed to behave as a

simple nonmagnetic dielectric, provided the ferrite is

saturated.

The technique of analysis used is smaller to that for

the phase shifter in Case 4. Again, the geometry is

“deformed” into rectangular coordinates, with a mag-

netic wall at each extreme x boundary. The intuitive

suggestion is to widen the line as before by an amount
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of 0,447h on each side. Of the excess, it is assumed that

one half behaves as fully magnetized ferrite and one

half as nonmagnetic dielectric of the same dielectric

constant. The modified geometry is pictured in Fig. 7.

As in Case 4, it is suggested that zone I be widened by

a total amount of 0,4471z, and zones 11’ and III be of

width 0.223h, filled with dielectric of susceptibility cf.

The analysis can proceed as in Case 4 and need not be

repeated here. Study of the equations shows that the

propagation constant of the dominant mode is affected

little by the fringing fields, particularly if the internal

field lYJ is small. The characteristic impedance, however,

may be significantly reduced by inclusion of these

fringing fields.

B. Microstrip Geometry

Fringing fields are more significant in this geometry,

particularly at the higher frequencies. The geometric

transformation is illustrated in Fig. 8, where only one

edge is analyzed. It is presumed that the upper con-

ductor is approximately coplanar with the ground plane,

and that the external electric fields are semicircular. The

external zone is analyzed in cylindrical coordinates, and

the small semicircular zone between the rectangular re-

gion and the cylindrical region is ignored. Our problem,

as before, is to determine a value for the edge admit-

tance Hu/Ee, using the cylindrical coordinates of Fig. 8.

In cylindrical coordinates 6, z, r, the appropriate TE

mode is described by the field components Eo, Hf, H.

as follows [5]:

Hz = A e-~~S’E70(1) (jk .Y) (54)

(55)

(56)

kC2 = ~z2 — 0J2POE0. (57)

The preceding apply only if k.2 is positive as defined

in (57).

A transverse wave admittance can be defined as

The Hankel functions are tabulated by Jahnke and

Erode [6]. The function lZO@ is imaginary so that Hr

and Et are in phase and H, is in quadrature. The trans-

verse wave admittance is also imaginary.

To match this admittance to the ferrite zone, we
assume (with some error) that Hz above is equivalent to

Hu in our rectangular coordinates at x = O. It is also

assumed (with some error) that Ee will be 2/7r times E=

in the rectangular coordinates at x = O. Thus for the

admittance match, we ignore the small semicylindrical

zone of the external cylindrical coordinate system with-

in the radius lz/2. The appropriate matching admittance
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Fig. 9. Computations of edge-guided mode parameters for a semi-
irifinite-width microstrip line, using data of Table II 1. Ideal
characteristics of first case are severely affected by fringing fields
at high frequency in second case. Significant compensation is ob-
tainable by capacitive loading of propagating edge (third case).

TABLE III

PARAMETERS FOR COMPUTATIONS OF FIG. 9

4irJfs = 178o G (saturated)
ef =16
h= O.025 in

H1=O
Compensating edge capacitance = 1.25 pF/cm

Y2Z is, therefore, estimated to be

(59)

The character of the preceding is such that the admit-

tance looking outward is imaginary and inductive. The

phase velocity will be increased by the effects of fringing

fields.

It should be recognized that the above approximation

is somewhat inaccurate, and is believed to be too large in

magnitude. We have not included the effects of the

dielectric material outside the edge of the microstrip in

this transformation.

Approximate computations have been made using

this formulation for the edge-guided mode in an

infinitely wide microstrip. The assumed parameters are

given in Table III.

These results are given in Fig. 9. Three cases are

shown. One represents the solutions of Case 1 neglecting

fringing fields. Another shows the effects of fringing

fields according to the preceding equations, and a third

includes an addition of capacitive susceptance to the

edge to compensate for the inductive susceptance of the

fringing fields. The effect of the fringing field correction
above is quite severe at the higher frequencies, causing a

disappearance of this mode at about 10.5 GHz. Above

this frequency the transverse decay constant a. has

vanished and solution of the wave equations requires

sinusoidal x variations. By the addition of a small capac-
itive perturbation to the edge, however, this effect can

be partially compensated, as the curves show.
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MAGNET CURRENT, AMP.

Fig. 10. Data obtained with experimental phase shifter described.
Over this frequency range, change in electrical length is plotted
as magnetic field is varied. Hysteresis effect is largely caused by
steel magnetic structure used.

It will be noted that no model and no analysis has

been made for the narrow microstrip line. This is a more

difficult problem, deserving of further study. For this

case the fringing fields tend to dominante the char-

acteristics and can no longer be considered as perturba-

tions. Furthermore, the fringing fields of the two sides

overlap, and are directly coupled in the region above the

conductor. Such lines have been used successfully and

repeatedly in various devices, including phase shifters

[8], circulators, and tunnel diode amplifiers [9]. Mea-

surements of phase-shift data are given by Buck [10],

and an analysis of the coupled-line problem is given by

Weiss [11].

VI. EXPERIMENTAL RESULTS

We report here some experiments with phase shifter

and isolator devices which resemble the models ana-

lyzed but are not exact equivalents. The data are not

intended to show quantitative agreement with the

theory.

A phase shifter was constructed in stripline form using

Trans-Tech GL61O material with 4mJf, = 680 G and a

dielectric constant of 14.5. Two ferrite slabs of 4.5 by

0.300 by ,0.100 in were used. As in Fig. 5, the center

conductor extended into air on one side and ceramic

dielectric on the other side. Steel plates were used as

ground planes, and a magnetic coil was added for field
control. The coil contained 80 turns. Step-type imped-

ance transformers were used for approximate matching
to 50-Q lines.

Fig. 10 shows data of phase shift versus coil current

for three different frequencies, always starting at nega-

tive values of current. One case also shows the returning

characteristic, illustrating the effect of magnetic hys-

teresis in the materials used. We have plotted the

change in electrical length “rather than angles. This is

the length ‘“change of an air-filled trombone coaxial

line, used to maintain balance in the phase bridge used.
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Fig. 12. Measured forward and reverse loss characteristics
of isolator similar to Fig. 11.
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Fig. 13. Measured forward and reverse loss characteristics of iso-
lator similar to Fig. 11, with added capacitive compensation
along low-loss edge.
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It will be noted that the length change is nearly con-

stant with frequency, indicating a phase change roughly

proportional to frequency. The curves of Fig. 6 also

show this character in the frequency range 3–3.5 GHz.

In this band we obtained about 1.5 full cycles of phase

shift. Attenuation averaged 0.8 dB.

A microstrip isolator was constructed as shown

in Fig, 11. Here the wide microstrip line was approx-

imately matched to the input and output 50-Q lines by

curved tapers. Loss was applied to one edge by overlay-

ing a Mylar film coated with thin-film metallization.

Data as shown in Fig. 12 were obtained with this device.

Based upon our theory of fringing-field degradation

of the edge-guided mode, we then applied capacitance

loading to the long straight edge of the conductor. This

device gave isolator effects over a much wider band as

shown in Fig. 13.

These devices used Trans-Tech ferrite material type

G113, 0.025 in thick. The device was 1 in long. The

fields shown in Fig. 13 were measured external to the , .

ferrite. Internal fields are reduced by the saturation D&er, 1945, pp. 236-243. “
[7] M. E. Hines, “A new microstrip isolator and its application to

magnetization, (Hi~H,xt —42TMSif Hat> 47rM,). This distributed diode amplification, ‘9in 1970 IEEE Int. Microwane

material has a saturation magnetization of 1780 G and Syfnp. Dig., pp. 304-307.
[S] G. T. Roome and H. A. Hair, “Thin ferrite devices for microwave

a dielectric constant of 15. integrated circuits, ” IEEE Trans. Microwave Theory Tech., vol.
MTT-16, July 1968, pp. 411-420.

[9] J. D. Welch, “Beam-lead tunnel diode amplifiers on microstrip, ”

VI 1. CONCLUSIONS
in 1970 IEEE Int. Microwave Symp. Dig., p. 212 (IEEE Cat.
No. 7O-C-1OMTT).

we have presented a theory for the propagation
[10] D. C. Buck, “Ferrite microstrip propagation, ” in 1970 IEEE

Int. Microwave Symp. Dig., p. 117 (IEEE Cat. No. 71-C-66).

modes in wide ferrite stripline and microstrip devices, [11] J. A. Weiss, “An analysis of nonreciprocal microstrip,” in 1970
~~~~~t. Microwave Sym.P. Dig., p. 404 (IEEE Cat. No. 70-C-

including the effects of fringing fields by approximation

techniques. Physical descriptions of the wave patterns [121

have been given. The dominant mode normally exhibits

a reversible field-displacement effect with energy con-

centrated along one side of the line.

We have also described a new form of isolator and a

new phase shifter which use the field-displacement effect

of the dominant mode. Experimental data have been

given which illustrate the usefulness of these devices.
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Absfracf—A computer-implemented procedure is presented for
the design of optimally efficient dual-series feed networks for use in

waveguide phased arrays where the network duectional couplers are

limited in their values of maximum coupling by geometrical and band-

width requirements. The theory of the design procedure is outliied

and results for the design of sum and difference pattern element
excit atlons for typical coupler limitations are presented.
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INTRODUCTION

A

SIGNI FI CANT problem in the design of mono-

pulse array antennas is to derive line source

microwave feed networks which yield two de-

sired array excitations with optimum efficiency and
which are compatible with the geometrical constraints

imposed upon them for use in two-dimensional arrays.

This latter factor places significant limitations on the

feed networks with respect to the types of directional


