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A Semi-Infinite Array of Parallel Metallic Plates of

Finite Thickness for Microwave Svstems*
ROBIN I.

Summary-An array of parallel metallic plates of finite thickness
are useful in microwave lenses. The effect of finite thickness in the
idealized situation of a semi-iniinit e array of perfect conductivity y, is
treated theoretically and experimentally for normal incidence of a
uniform plane wave on the plane interface separating the medium
from free space. The theoretical discussion involves the approximate

variational method and a procedure is given for estimating the order

of magnitude of the error in the final result. It is shown that it can be
advantageous to use plates of finite thickness since the reflection
from the interface can be reduced from that existing for infinitely

thin plates.

INTRODuCTION

‘TO OBTAIN a rigid structure, the practical use of

a system of parallel metallic plates as a refracting

medium in microwave systems, requires plates of

appreciable thickness. The effect of this thickness on

the reflecting and transmitting properties of the semi-

infinite medium has caused much interest, but as yet no

solution has been published, although Epsteinl has

given an empirical correction to the case of infinitely

thin plates based on experimental evidence. An at-

tempt was made by the author to extend the various

rigorous theoretical methods to cover the case of plates

of finite thickness, but these proved discouraging. Of the

various approximate methods available, the variational

method appears to be the most suitable as it provides a

means of estimating the degree of approximation and

also yields best results where the form of the trial field is

known, as in the present case.

Using this method, formulas have been obtained for

the complex reflection coefficients at the interface of a

semi-infinite medium of parallel, perfectly conducting,

metallic plates of finite thickness, for normal incidence

of a uniform plane wave. An estimate of the order of

accuracy is made by two methods. The polarization is

such that electric vector is parallel to the plate edges.

Theoretical results are confirmed by experimental re-

sults obtained in a strip transmission line at 8.0 to 11.0

cm wavelengths.

THE VARIATIONAL METHOD

The variational technique, in its form due to Schwin-

ger2 has been used widely in microwave problems. For

the present application it is convient to obtain expres-

* The work for this paper was performed at Imperial College,
London, Eng.

~ Def. Res. Board, Ottawaj Canada.
‘ D. J. Epstein, “Phase shift of microwaves in passage through

parallel plate arrays, ” Tech. Rep. 42, Lab. for Insulation Res., M. I. T.;
August, 1950.

‘ J. Schwinger, unpublished notes on waveguide discontinuities,
foreword by Saxon,

sions for the complex impedance or admittance at the

interface in terms of either the interface electric or mag-

netic field. These expressions are of such a form that

they are stationary for arbitrary variations of the inter-

face fields about their correct value. This means that

if the assumed field distribution is in error to a certain

order, then the desired impedance or admittance is in

error to the second order, provided the original error

is not too large.

The basic problem to be studied is that of the normal

incidence of a uniform plane wave on the plane inter-

face of a semi-infinite array of perfectly conducting,

parallel, metallic plates of arbitrary thickness (b –a)

(Fig. 1). The spacing between the plates is occupied by
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Fig. 1—A semi-infinite array of dielectric filled metal plates.

a dielectric of permittivity e. The spacing a is restricted

to allow the propagation of the HoI mode only, i.e.,

“<06=3<2”
AO = free space wavelength.

To obtain a particular variational expression it is

necessary to evaluate either the tangential electric or

magnetic fields at z = O, over some region b, and then to

integrate over this region. Consequently, it is permissi-

ble to equate fields valid for all z, or fields valid in the

region b only. The latter procedure results in consider-

able simplification and will be used.

The field equations have been developed by Berz3 in

a related problem and are directly applicable.

s F. BerZ, “Reflection and refraction of microwaves at a set of
~::llel metallic plates, ” Proc. IEE, vol. 98, pt. 3, pp. 47–55; Jauuary,
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For the polarization shown the problem is two- 2?’n&rx

dimensional and the only three components of the field Ego= l+ Ao+~A. cos —
m==1 a

are:

dEV 2m&rx

E.(X, z), HZ(%, z) = – (j/@P) ‘:, H.(X, z) = (j/@y) a: z , =
–j(l – Ao)po+j~aAmc’os–— ,

m= 1 a

and of these the continuity of EY and Hz are only neces- Then, by Fourier analysis,

sary to satisfy the boundary conditions at z = O. Further-
b12

more, since there is no component perpendicular to the l+ Ao=~ s Euodx = + sl%u,dx

dielectric at z= O, it is sufficient to use dEv/dx rather b –h[z UP

than I?,.
and

The fields are listed below.
2m&x

Plate Region: z> O
Am=: sE.O COS—— dX. for m # 0.

ap a

Eu =

aE,

13z =

()E ‘1
a

andatz=O

by Fourier analysis

a/2

B.=z
s

‘nrx
EVO COS — d%

a —a12 a

2 s n7rx H a/2

—— . E,, COS-— dx —— .
a w a a~ —a/2

Free Space Region, z< O

Noting the periodicity b in the x direction, the field

can be written as a Fourier Series valid for all x as fol-

lows :

E, = exp. ( –jL30z) + JIo exp o(j60z)

2m&rx
+ ~AmCos —— exp. (jawz)

m,=1 a

z’n&-T -y

+ jjjam.4. cos — exp (jafiz)
m= 1

_——

“m= +(%)a’o’:’ ‘=:

Equating the magnetic fields in the aperture

and substituting for Aw and Bn;

w

–j ~ fin Cos’?l!!-!-s ?z?rx
Euo COS–— dx

TJ=l aa.P a

. –j(l – Ao)Po+js ~m
m-l

2 s 2m~zrx
.— E.O COS—— ax,

b aP a

2m&rx
Cos ——

a

(1)

Multiplying by E., and integrating over the aperture

(Ix] Sa/2)

00(1 – ~o)
J

EVOdx
.F

+ ; :l%s E,, COS
2?n&rx

J

2m& x
— dx EVO COS—– dx

m aD a ap aandatz=O
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and then dividing by Using

l+ AO=+ sEVOdx

UP

results in

1s ET%

1
2

E., COS — dx
1–AO

80 —=:gfin a’ a
l+AO n, Is EuOdx

ap J

u 2m~x
E,O COS — dx

a
+25am a’

m= 1

b
EVOdx

an

1–A,
l’=—

l+AO

. ...(2)

has the dimensions of an admittance and is, in fact, the

input admittance at the interface on the free space side.

It is stationary with respect to arbitrary variations of

EUO about its correct value. This can be seen from the

following: taking the first variation of Y with respect

to q,,

L$IOy{Ja/OdX121

= ; : (%,fE.. COS”lX dxf 6EU0 COS ‘:x ‘x

m a’ a aP a

2m&%x

+45.. s s 2m&rx
E,, COS — dx tiEVO COS — dx.

Tn=l ap a aP a

Assuming that the order of summation and integration

can be interchanged,

&{~E.od+Y

2m&rx 2m&rx
+2jj_&cos—— sE,,, COS — ‘x

7?Z=1 a w a

1–AO
–bo — S1EuOdx ~

1+.40 .,

l+ AO=;
s

EgOdx,

ap

the expression in square brackets is zero by virtue of

(1). Therefore ~ Y= O, and Y is stationary.

Eq. (2) yields A O, the complex reflection coefficient

at the interface for free space incidence, and partially

specifies the properties of the interface. To complete

this specification it is necessary to find B the complex

reflection coefficient for plate region incidence; i.e., the

fields now are,

EV = cos ~xexp. (j~,z) + B, cos ~ exp. (–j~lz.)
a a

Z<o.

Note that B. and A ~ do not have the same values as for

free space incidence, but the same symbols have been

used to distinguish the plate region and free space

gion fields respectively.

In exactly the same way as before, one obtains,

equating the magnetic fields in the plane z = O,

I

+iDn
n=3

1

5
m= 1

s rmx
EUO COS — dx

a’ a

2

s 2m&x
EUO COS — dx

.P a 1

re-

by

2

. . . . (3)

l–BI
Y=

l+BI

is now the input admittance at the interface for pIate

region incidence and it can be shown to be stationary.

4 R. 1. Primich, “A general experimental method to determine
the properties of an artificial delay medium, applied to semi-infinite
array of parallel metallic plates, ” Proc. IEE, VO1. 102, pt.B, pp. 26-
36; January, 1955.
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In the absence of loss, I Bl] ~ = I Ao\ o since BIP is now

the complex reflection coefficient on the plate region

side.

There are two corresponding expressions for

l+AO l+BI
and —

l+AO l–BI

in terms of the tangential magnetic field in the aperture

plane. The derivation is similar to the above except

that the electric fields are now equated in the aperture,

piecewise over the regions

\~[ #-and ]Xl <b-a— .—
2 2

The results are

11J

?lTX
~0 COS— dx 2

1 I+ #lo
–—=:$;~ a
POI– AO n sFodx

b

(
2m&rx

F“ COS— dx
-b a

( FOdx
( ~b

and

H F,dx
1 l+BI ~

if

b

~l– Bl=2f?0
F. COSz dx

ap a,

2

. . (4)

( r 2m@x z

1

F. COS— dx
a

+tmi::b 1 . . .

1

(>)

sF. COSz dx
b a

They are stationary with respect to arbitrary varia-

tions of Eyo about the correct value.

AN ESTIMATE OF THE ERROR IN THE ‘V.ARI~TIONAL

SOLUTION

Use of the Complex Plane

For a given region of incidence there are a pair of

corresponding expressions giving the input impedance

at the interface in terms of the electric cn- magnetic

fields in the aperture plane; i.e., ‘

—., -

1]
1—/40

ZE= — from (2)
I–Ao E

1+.40

[1
ZK= — from (4).

l–Ao

Now for the correct fields E:,, and Fo, ZE = ZH, but

for any approximate field Z~ #Z~. However, if it is

assumed that it is possible to express EVO as a sum of

terms which successively represent better approxima-

tions, then if ZE = RE +jXE k plotted in the COmPlex

plane for various degrees of approximation, a curve

results which must eventually approach the correct

value of ZE, and a similar curve fOr ZH” ~H +jXH must

SWentdly intersect it at ZE’= ZH. Pradcally, it k

possible to predict the point of intersection ZE = ZII by

using a reasonable number of approxirnations. In the

present instance, the aperture fields can be written as

a series of known forms in which the addition of a single

term represents a better approximation to the correct

field.

An alternative approach to this problem has been usedl

by Miles5 who, in a study of an array of lparallel metallic

strips, showed that RE, RH and XE, .XH are individually

stationary and bounded. This means that A oand BIP are

known within wider limits that RE and .XE Or RH and

XH and in general these limits are wider than given by

the above method.

Equivalent Circuit Method

/ F. An alternative method of estimating the error is

where

dEwt
F. = -- K H.,.

dz 10

l+AO l+BL
and —

l–Ao 1–BI

now have the dimensions of an impedance Z and, in

fact, are the complex input impedances at the interface

for free space and plate region incidence respectively.

based on a suggestion of Brown’sG and is very similar

to that used by Collin,7 but it is derived in terms of

different parameters.

By using a short circuit termination in either the free

space or plate regions, the input impedances and admit-

tances become purely imaginary and one may associate

with them a three-element reactive network, the values

of which can be found from three short circuit positions.

5 J. W. Miles, “On the diffraction of an electromagnetic wave
through a plane screen, ” ~. Af@. Pkys.,, vol. 20, pp. 760-771; August,
1949. -

s J. Brown, letter in Electronic %grg.; October, 1950.
7 R. E. Collin, “Interface problems at dielectric discontinuities

in wavermides. ” Ph.D. dissertation, Univ. of London, Eng.; 1953.
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A typical variational expression will be derived, i.e., by Fourier analysis,

for free space incidence, and in terms of the aperture

electric field. (See Fig. 2.)
()

‘$, 4P 2~Blexp. j— Cos —= ;

s
EVO COS ‘—x dx

2 2 ap a

B.=!
s

m%x
E.O COS — dx.

a aP a

The free space magnetic field is still given by

Ev

r
— dEU

.—
dz (1

.llo(l – Ao)

h

......................

co

CIRCUIT

Fig, 2—A semi-infinite array of metal plates with short
circuit termination.

The distance S is such that the evanescent modes

excited at the interface are of negligible amplitude at

the short circuit. At some plane Z in free space, again

sufficiently far from the interface, the electric field will

have a zero value. Let the distance of this plane from

the interface be d.

If BI cos ~x/a exp ( –j~lz) is the transmitted wave in

the plate region, there will be a reflected wave exp

(j@,)Bl cos ~x/a exp j~lz due to the short circuit, where

& is the wave’s phase referred to Z= O. At Z= S the

total electric field must be zero, which gives @P= r

– 2&s,

The total plate region field is then

July

2m.$%x+j+5, amcOs — s 2m&x
EUO COS — dx.

m. a ap a

Equating these in the aperture (Ix\ s a/2) and multi-

plying by E~O, then integrating over \ x I s a/2 and

dividing by

l+ AO=+
s

Eydy,

UP

there results, finally

p
s

mr x
EUO COS — dx 2

+j;ijti “P

a

.

s
EgOdx

ap J

at Z=O, put

and

ff?n &
– –jQm;

Z– K
= – jR,,

~=lv

Do ;

dEY

()
= – 2~lBI cos ~xexp. j‘~ Q~, R. are real and positive for m, n # 1. Under short

Zo u circuit conditions A O= exp. (jrjO), & = phase of the unit

reflected wave referred to z = O. Then

‘#P “ mrx
.sin ——j~&B. cos-—

2 m=3 a

I–A.
— .

l+AO
–jtan$
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?Llr x
Cos —

a
+i

%==3 ISEYO
aD

n-%
Cos —

a

~Q.
m==l

(8)

Is 2m&x
E,, COS— dx

ap a

Is Eti,dx
all

i Q.+2
m=l

1_cot+ =
N2

The corresponding magnetic field expression is

1

s

2W@r% “
13.0 Cos —— – dx 1

b a
.—

1

sH.. COSz dx
~P a I

. (9)

DETERMINATION OF THE REACTANCE

Fig. 3 shows the form of the assumedl equivalent cir-

cuit. All impedances are purely reactive and are nc)rmal -

ized relative to 20.

)

+25
m=-1

(7)

Z.

I —,

Fig. 3—Equivalent circuit of interface,,Both expressions are stationary and, for arbitrary

variations about EVO(H.O), tan @o/2 (cot 40/2) is an

absolute minimum (since tan 40/2 (cot 40/2) is real).

Consequent y for any trial field tan @o/2 (l?VO) is too

large and tan q50/2 (H.o) is too small. Thus for any three

values of tan cjp/2 (short circuit position) three react-

ance can be determined within known limits. However,

only two of these reactance can be identified with

known terminations in the equivalent circuit, but by

setting up two similar variational expressions for plate

region incidence, a further two reactance may be found

and any three of the four may be chosen.

The expressions for plate region incidence are

Two simple equivalent circuit terminations that can

be associated with the short circuit positions in the thick

plate system are the open and short circuit conditions.

FREE SPACE INCIDENCE

For any termination ZE, the input impedance (Fig.

3) is

21$/
z.. = Zll – —— ~

z!&! + zR
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1) Short circuit termination, (ZR = O)
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211222 – 2122
2,. =

222

X11X22 – X12’
. .i for 211 = jXI1, 222 = jX22, 212 = jX12.

X22

2) Open circuit termination, (ZR = ~ )

Zin = 211 = jX1l.

Now in the plate system tan &/2 is the susceptance

produced at z = + O by the short circuit at some positions,

Thus,

ZR = O corresponds to tan ~ = w

ZR = co corresponds to tan ~ = 0.

Therefore

1 40 4P
—-=tan I=(6) fortanz= O
X11

x22 40 4,
= tany= (6) fortanz= CO.

X11X22 – X122

Similarly, for plate region incidence,

1
=tan~=(8)fortan~=0

z

Xu 4, +0
= tan~= (8) fortan Y= =.

X11X22 – X122

Hence,

.X11.X2!? — X122 X11 X,2 — xp#
X11, X22,

X2.2 XII

so determined will be too small, while, from the corre-

sponding magnetic field expressions, they will be too

large and thus the reactance are known within limits.

Therefore, it is only necessary to find Xll, X22 together

with either

X11X22 – X122 X11X22 – X122
or

X22 XII

NUMERICAL WORK

Ckoice of a T~ial Field

One of the most important factors in determining the

final accuracy in the variational method is the choice of

the type of trial field. For the aperture electric field in

the plate region the field expansion is known, i.e.,

Using this in (2) and (3) the formulas for numerical

computation (listed in the appendix) are obtained.

P

10.0 Cms.

7

9.8 v’—

9.6 3’

9.4 7/“ 7

9.0 “

I
I

/
It

+

1 , I 1 I

) 0,9 08 0,7 0,6 0.5

(’f

Fig. 4—Phase of reflection coefficient for single interface.

A logical choice of magnetic field is given by an ex-

pansion of the type given above for Ix] ~ (a/2), and an

expansion representing the current distribution over the

plate edges. Apart from involving two sets of unknown

coefficients, the form of the current distribution is not

known, so it is far more convenient to use a more general

expansion of the type already encountered for the free

space region, i.e.,

H., = 1 + ~C. exp.
m=l (coS%) lX1 ‘“2

The formulas obtained by using this in (4) and (5) are

listed in the Appendix.

A maximum of four terms is used in each expansion

and these are referred to as fourth approximations.

Calculations for a Typical System

The system chosen has 2a= 11.56 cm, with no di-

electric filling and a wavelength range 9.0 to 10.0 cm,

or a refractive index variation of 0.5 to 0.6.

Figs. 4–6 illustrate the magnitude and phase of the

complex reflection coefficients for a single interface as a

function of the parameter & = a/b. The curves are thus

for a fixed wavelength, constant a (and thus a constant

refractive index), for increasing plate thickness.

To obtain some idea of the dispersive properties of

such a system, Fig. 7 illustrates the same information

as a function of wavelength for various values of ~.

The calculations were carried out using the electric
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Fig. 5—Phase of reflecticm coefficient for single
interface on free space side.

).0.9Ocms

~—
10 0.7 0,6 05

(=:

Fig. 6—Phase of reflection coefficient for plate region side,

field expressions with only the second approximation.

An estimate of the error (see following section) shows

that at & = 1.0, AO = 9 cm, the magnitude of the reflection

coefficient is 3 per cent too low and the phase is within

5 per cent.

The resonance occurs at XO= b, and for & <b higher

order freely propagating modes are present in free

space. Although the calculations are still valid in this

region, they are incomplete to the extent that they do

not include the amplitudes (of these higher order waves.

‘ o~—...90 91 92 9.3 94 9.5 9.6 9.7 9,8 9.9 100
FREE SPACE WAVELENGTH (ClllS)

Fig. 7—Magnitude of reflection coefficient for single interface.

Z=~.R’+jX

5 - ~R igorous Theory

2 34

\

4+Number of Approximation
3

.4 -
2

x
.-7

.3~-——-
i.1 IL 1.3 I .4

~=l+B,—. R+j X
1-01

.2 _ Rigorous Theory
/2/

\

<

4
3
2

*Number of Approximation

.1-

~..—.
.70

R

Fig. 8—Interface impedance plotted in complex. plane.

The two methods for estimating the error will be

illustrated for the above system at & = 1.0 and A.= 9.0

cm. Under these conditions a rigorous result can be

obtained from the Carlson-Hei m theor y3’8 and an ab-

solute check is possible.

The Complex Plane

The input impedances ZB and ZH at the interface were

calculated for the second, third, and fourth approxima.

tions. These are shown in Fig. 8 for free space and

plate region incidence. Since the rigorous solution is

SJ. F. Carlson and A. E. Heins, “The reflection of an electro-
magnetic plane wave by an infinite set c,f plates, ” Quart. A ppl. Math.,
vol. A, pp. 313–329; January, 1947.
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known in the present instance, it is apparent that smooth

curves drawn through the two sets of points intersect

at the correct value. It is also apparent that straight

lines drawn through the third and fourth approximations

intersect very near the correct value, and in fact

calculation of the reflection coefficients from this point

of intersection results in an error in magnitude of less

than one per cent and a phase angle within two de-

degrees.

Reactance of the Equivalent Circuit

Using the formulas listed in the appendix the follow-

ing results were obtained

Electric Field Magnetic Field

no of 1) 3.260
x,, approx 2) 3.558 5.2%

3.708 4.937
;] 3.793 4.652

X11X22– X122 1) 0.0 0.058
2) 0.0234 0.0429

X22 0.0294 0.0424
:{ 0.032 0.0417

4.021
X22 ;] 4.208 6.;0

3) 4.317 5.469
4) 4.390 5.182

As the electric field quantities are smaller and con-

verge more rapidly than those for the magnetic field,

the geometric mean of the two was taken to give

line which attempts to simulate free space conditions

with uniform plane wave excitation.

Because of its finite size the line has an inherent error

which results in less than — 3 per cent error in magni-

tude of reflection coefficient and less than five degrees

in phase. The line has been calibrated using an array

of very thin plates.4

The two-interface method with a short circuit termi-

nation was used.4 (See Fig. 9.) Full details have been

/4
CONDUCTING PLANES

zSPECIMEN

‘Ou”~’T
Fig. 9—Measurement of specimen in strip transmission line.

given elsewhere4 but briefly the method consists of dis-

placing the thick plate specimen (length 1.) by known

amounts (.S) from the short circuit and locating the

corresponding positions (D) of zero field strength. From

the Weiss floch curve relating D and S the complex

reflection coefficient of the slab follows and by obtain-

ing this quantity for various lengths (L), the properties

of a single interface can be found.4

The specimen was constructed as in the previous

work.4 Waveguides were formed by wrapping 0.001 inch

tin foil around machined dielectric blocks (expanded

ebonite) and spacing these apart by thick plates, which

consisted of machined bakelite covered with tin foil.

The whole structure was wrapped in a single sheet of

foil to make a rigid unit.

Geometric mean 4.20 0.0365
Carlson-Heins theory

4.77
4.05 0.0336 4.60

EXPERIMENTAL RESULTS

Using these values the final reflection coefficients are

A, B,

Variational method O.226/49 .94” 0 .226/35 .43 °–1800
Carlson-Heins theory 0.229/50.2° 0 .229/35 .9 °-180°

The magnitude in error is less than 2 per cent and in

phase less than one degree, so that as far as accuracy

is concerned there is little to choose between the two

methods of estimating the accuracy. However,, the

complex impedance diagram is simpler to use and gives

an excellent idea of the manner of convergence.

EXPERIMENTAL CONFIRMATION OF THE THICK

PLATE THEORY

The equipment used has been fully described else-

where.4, g It consists essentially of a strip transmission

g M. M. Z. E1-Kharadly, ‘{Investigation of certain types of arti-
ficial dielectrics, ” Ph.D. dissertation, Univ. of London, Eng.; 1952.
Also Proc. IEE, vol. 102, pt. B, pp. 17-25; January, 1955,

Figs. 10–13 show the results for two cases in which

the plate thickness is small, but large enough to dis-

tinguish experimentally from the case of infinitely thin

plates.

.

‘,l+t=b

= ,1
FREE SPACE wAVELENGTH (ems)

Fig. 10—Magnitude of reflection coefficient and refractive index
for thick plates~
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Fig. 12—Magnitude of reflection coefficient and refractive index
for thick plates:
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Fig. 13—Phase angles of reflection coefficient.

Figs. 14–16 show the result sfor a system in there-

xion Ao>fr. No measurements were possible for ko<b
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Fig. 14-Magnitude ofreflection coefficient andrefractive inclex
for thick plates.3
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Fig. l.5-Phase angIe of reflection coefficient.
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Fig. 16—Phase angle of reflection coefficient.

as in this case the higher orcier waves caused consider- approximated very closely to that of the HOI mode4

able interference with the main beam. In fact, this inter- and from this point of view the so-called normally inci-

ference was observed for A. larger than b, due to the dent plane wave can be considered to be the sum of two

finite size of the line. The field in the transmission line uniform plane waves slightly off normal. Although this
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angle is only 5 degrees it is sufficient to account for the

presence of higher order propagating waves at wave-

lengths noticeably longer than the theoretical XO = b. In

a typical case the higher waves were first noticed at

AO= 9.8 cm compared to 9.5 cm at which point they

caused considerable distortion.

The calculated curves in Figs. 7–13 were obtained

from the variational expressions using the fourth ap-

proximation. An estimate of the error showed the mag-

nitude of the reflection coefficient to be within 1 per

cent and the phase within 2 degrees.

CONCLUSION

The experimental results given are typical of a large

number taken from about ten specimens and the agree-

ment between theory and experiment is of the same

order throughout. Allowing for the inherent error of

the transmission line the worst error is — 5 per cent for

the magnitude of reflection coefficient and within 5

degrees for the phase. Apart from the region of inter-

ference mentioned above, the thick plate theory ap-

pears to be quite satisfactory. Departures from this

theory are believed to be due to the difference between

the ideal and practical situations, mainly in regard to

the imperfect means of plane wave excitation. Further

study of the higher order propagating waves is required,

although in general it is not desirable to have these

higher orders present. It is worth noting that for a

constant refractive index, the reflection at a single

interface can actually be reduced by intentionally in-

creasing the plate thickness, up to the point at which

the first higher order wave starts to propagate.

The solution for arbitrary plane wave incidence offers

no fundamental difficulty and is being extended.

The Characteristic Impedance of Trough and Slab Lines*
ROBIN M. CHISHOLM~

Summary—A variational method is used to develop an expression
for the characteristic impedance of a “trough line” consisting of a

circular cylinder mount ed inside and parallel to the walls of a semi-
infilte rectangular trough. The ~%lab line~t consisting of a circular

cylinder between intinite, parallel plates is treated as a special case
of the trough line in which the bottom of the trough is taken to be
infinitely remote from the circular cylinder. The solution has not

been restricted to cylinders that are mounted exactly half way be-

tween the parallel walls of the trough; a simple formula is presented
for calculating the tolerances which must be placed on the “center-
~g~~ of the center conductor for a given allowable error in the chm-

acteristic impedance.
The expression for the characteristic impedance is presented as

the sum of three terms. The first is a “zero order” logarithmic term,
the second a “second order” correction term which vanishes as the

center conductor becomes infinitely small, and the third is an (Coff-
center’~ correction term which arises when the cylinder is not ex-
actly half way between the parallel walls of the trough. The second

order correction term amounts to about 0.3 ohms when the charac-

teristic impedance is of the order of 50 ohms. A fourth order approx-
imation using the same method changes this by about 0.001 ohm.

INTRODUCTION

D

IFFICULTIES in manufacturing slotted lines

for coaxial systems have led to the investigation

of special types of coaxial lines for this purpose.

* This work was supported in part by the Res. Council of On-
tario, and by the Def. Res. Board of Canada, project number 5540-02.

~ Dept. of Elect. Engrg., Univ. of Toronto, Toronto, Can.

The present work is concerned with finding the charac-

teristic impedance of two special types of two-conductor

transmission lines which can be used for standing wave

measurements. The “trough line, ” illustrated in Fig.1,

consists of a circular cylinder mounted inside and paral-

lel to the walls of a rectangular trough. The “slab line, ”

consisting of a circular cylinder between infinite, paral-

lel planes, can be considered as a special case of the

trough line in which the bottom of the trough is infi-

nitely remote from the circular cylinder. The line is ex-

cited in the TEM mode by a generator connected be-

tween the circular cylinder and the walls of the trough

and propagation is along the axis of the cylinder.

The practical difficulties involved in constructing co-

axial slotted lines and the application of ‘(slab lines” to

the problem have been discussed in a paper by Wholey

and Eldred.1 These authors developed a solution for the

“slab line” using conformal mapping to match the outer

conductor everywhere and the inner conductor at four

points which was accurate to about 0.1 ohm for char-

acteristic impedances of the order of fifty ohms. Frankelz

treated both the “trough line” and the “slab line” using

conformal mapping for the case of an infinitely thin

center conductor and, although a different method is

1W. B. Wholey and W. N. Eldred, “A new type of slotted line
section, ” PROC. IRE, vol. 38, pp. 244-248; March, 1950.

Z S. Frankel, ~’Characteristic impedance of paralIel wires in rec-
tangular troughs, ” PROC. IRE, vol. 30, pp. 182–190; April, 1942.


